
Synchronization and Ordering Semantics
in Hybrid MPI+GPU Programming

Ashwin M. Aji,∗ Pavan Balaji,† James Dinan,† Wu-chun Feng,∗ Rajeev Thakur†

∗Dept. of Computer Science, Virginia Tech {aaji, feng}@cs.vt.edu
†Math. and Comp. Sci. Div., Argonne National Lab. {balaji, dinan, thakur}@mcs.anl.gov

Abstract—Despite the vast interest in accelerator-based sys-
tems, programming large multinode GPUs is still a complex
task, particularly with respect to optimal data movement across
the host-GPU PCIe connection and then across the network.
In order to address such issues, GPU-integrated MPI solu-
tions have been developed that integrate GPU data movement
into existing MPI implementations. Currently available GPU-
integrated MPI frameworks differ in aspects related to the buffer
synchronization and ordering semantics they provide to users.
The noteworthy models are (1) unified virtual addressing (UVA)–
based approach and (2) MPI attributes–based approach. In this
paper, we compare these approaches, for both programmability
and performance, and demonstrate that the UVA-based design is
useful for isolated communication with no data dependencies or
ordering requirements, while the attributes-based design might
be more appropriate when multiple interdependent MPI and
GPU operations are interleaved.

Index Terms—MPI; GPGPU; Unified Virtual Addressing;
CUDA; OpenCL; MPI-ACC

I. INTRODUCTION

Graphics processing units (GPUs) have gained widespread
use as general-purpose computational accelerators and have
been studied extensively across a broad range of scien-
tific applications [1]–[3]. The presence of GPUs in high-
performance computing (HPC) clusters has also increased
rapidly because of their unprecedented performance-per-power
and performance-per-price ratios. In fact, 62 of the fastest
supercomputers in November 2012 employed general-purpose
accelerators, 53 of which were GPUs [4].

Despite the growing prominence of accelerators in HPC,
programming large systems equipped with GPUs is still a
complex task. In particular, when data has to be moved from a
GPU on one node to a GPU on another, such movement of data
must be coordinated across the host-to-GPU PCIe connection
on the source node, over the network, and finally over the
GPU-to-host PCIe connection on the destination node. This
already complex task becomes even more overwhelming when
pipelining of data, topology awareness with respect to the GPU
proximity to the network, and vendor-specific features such
as GPUDirect [5] need to be taken into account for optimal
performance.

In order to address such issues, a number of GPU-integrated
Message Passing Interface (MPI) [6] solutions have been
recently developed [7]–[11]. These solutions integrate data
movement from dominant GPU programming models such

as Compute Unified Device Architecture (CUDA) [12] or
Open Computing Language (OpenCL) [13] into the MPI
implementation. Thus, the MPI implementation can move data
from host memory to host memory (like traditional MPI),
from GPU memory to GPU memory, or any other combination
such as from GPU memory on one process to host memory
to another. Such solutions also bring the rich set of MPI
functionality, such as moving noncontiguous data through
derived datatypes [11], to GPU data movement.

While most GPU-integrated MPI frameworks are broadly
similar to each other, they differ in subtle aspects related to the
kind of buffer semantics they allow of users and consequently
the buffer synchronization and ordering semantics they provide
to users. In this paper, we investigate the design differences
between two such semantics that are found in current GPU-
integrated MPI frameworks: (1) unified virtual addressing
(UVA [14])–based approach and (2) MPI attributes–based
approach.

We find that the UVA-based approach does not allow
users to provide enough semantic information about GPU
stream ordering and completion semantics. This makes them
fundamentally restricted to a model where data movement is
completely unordered from other data accesses or computation
being carried out on the GPU, thus placing the onus of
data synchronization on the user. The MPI attributes–based
approach, on the other hand, allows users to provide richer
information to the MPI implementation that it can take advan-
tage of for performance and correctness without forcing the
user to manage these synchronization semantics. Our experi-
ments with benchmarks using multiple GPU streams and MPI
communication operations show that while the UVA-based
design is useful for isolated point-to-point communication with
no data dependencies or ordering requirements, the attribute-
based design might be more appropriate when multiple inter-
dependent MPI and GPU operations are interleaved. Further,
in some cases, applications using the attribute-based design
can outperform the UVA design by up to 34.2%.

The rest of the paper is organized as follows. We pro-
vide background on relevant technologies in Section II. In
Section III, we present details on how GPU-integrated MPI
frameworks work and the models they use. Synchronization
semantics that are used in GPU-integrated MPI frameworks
and their impact are discussed in Section IV. Experimental re-

sults and their analysis are presented in Section V. Section VI
discusses the limitations of current hardware in this area
and provides a peek at new features in upcoming hardware.
Other relevant literature related to this paper is presented in
Section VII. Our conclusions are presented in Section VIII.

II. BACKGROUND

In this section we briefly discuss two types of programming
models: GPU programming models and MPI+GPU hybrid
programming models.

A. GPU Programming Models: CUDA and OpenCL

Most of today’s GPUs are connected to the host processor
and memory through the PCIe interconnect. The high-end
GPUs typically contain separate, high-throughput memory
subsystems (e.g., GDDR5); and data must be explicitly moved
between GPU and host memories by using special library
DMA transfer operations. Some GPU libraries provide direct
access to host memory, but such mechanisms still translate to
implicit DMA transfers.

CUDA [12] and OpenCL [13] are two of the commonly
used explicit GPU programming models, where GPU-specific
code is written to be executed exclusively on the GPU device.
CUDA is a popular, proprietary GPU programming environ-
ment developed by NVIDIA; and OpenCL is an open standard
for programming a variety of accelerator platforms, including
GPUs, FPGAs, many-core processors, and conventional multi-
core CPUs. Both CUDA and OpenCL provide explicit library
calls to perform DMA transfers from the host to device (H-D),
device to host (D-H), device to device (D-D), and optionally
host to host (H-H). In both CUDA and OpenCL, DMA
transfers involving pinned host memory provide significantly
higher performance than does using pageable memory.

1) GPU Streams and Synchronization Semantics: GPUs
have hardware queues for enqueueing GPU operations; for
example, NVIDIA GPUs (compute capability 2.0 and above)
have one hardware queue each for enqueueing kernels, D-
H data transfers, and H-D data transfers. In this way, one
can potentially overlap kernel execution with H-D and D-H
transfers simultaneously. In addition, CUDA and OpenCL both
provide GPU workflow abstractions, called streams (cudaS-
tream t) and command queues (cl command queue).1 A GPU
stream denotes a sequence of operations that execute in issue
order on the GPU [15]. Operations from different streams can
execute concurrently and may be interleaved, while operations
within the same stream are processed serially. Synchroniza-
tion between streams is explicit, whereas the synchronization
within a stream is implicit. Also, all the stream operations are
asynchronous with respect to the host CPU. We note that if a
data element is shared among multiple streams, say one stream
for kernel execution and another for D-H transfers, the streams
must be explicitly synchronized for correctness; otherwise the
behavior is undefined.

1CUDA streams and OpenCL command queues are referred to as GPU
streams henceforth in this paper.

2) GPU Data Representation and Address Spaces: Despite
their apparent similarities, however, CUDA and OpenCL differ
significantly in how accelerator memory is used and how data
buffers are created and modified. In OpenCL, device memory
allocation requires a valid context object. All processing and
communication to this device memory allocation must also be
performed by using the same context object. Thus, a device
buffer in OpenCL has little meaning without information about
the associated context. In contrast, context management is
implicit in CUDA if the runtime library is used.

In OpenCL, data is encapsulated by a cl mem object,
whereas data is represented by a void * in CUDA. CUDA
(v4.0 or later) also supports unified virtual addressing (UVA),
where the host memory and all the device memory regions (of
compute capability 2.0 or higher) can all be addressed by a
single address space. At runtime, the programmer can use the
cuPointerGetAttribute function call to query whether a given
pointer refers to host or device memory. The UVA feature is
currently CUDA specific; and other accelerator models, such
as OpenCL, do not support UVA.

B. MPI+GPU Hybrid Programming Models

Current MPI applications that utilize accelerators must per-
form data movement in two phases. MPI is used for internode
communication of data residing in main memory, and CUDA
or OpenCL is used within the node to transfer data between the
CPU and GPU memories. Consider a simple example where
the sender computes on the GPU and sends the results to
the receiver GPU, which then does some more computations
on the GPU. One can implement this logic in several ways
using the hybrid MPI+GPU programming model as shown
in Figure 1. In this simple set of examples, the additional
host buf buffer is used only to facilitate MPI communication
of data stored in device memory. One can easily see that as the
number of accelerators—and hence distinct memory regions
per node—increases, manual data movement poses significant
productivity and performance challenges.

Figure 1a describes the manual blocking transfer logic
between host and device, which serializes GPU execution
and data transfers, resulting in underutilization of the PCIe
and network interconnects. Figure 1b shows how the data
movement between the GPU and CPU can be pipelined to
fully utilize the independent PCIe and network links. However,
adding this level of code complexity to already complex
applications is impractical and can be error prone. In addition,
construction of such a sophisticated data movement scheme
above the MPI runtime system incurs repeated protocol over-
heads and eliminates opportunities for low-level optimizations.
Moreover, users who need high performance are faced with
the complexity of leveraging a multitude of platform-specific
optimizations that continue to evolve with the underlying
technology (e.g, GPUDirect [5]).

Synchronization Semantics in MPI+GPU Models: In the
hybrid programming model with interleaved GPU and MPI
operations, the programmer must adhere to the programming
semantics of both models. When GPU data transfer operations

1 double *dev_buf, *host_buf;
2 cudaMalloc(&dev_buf, size);
3 cudaMallocHost(&host_buf, size);
4 if (my_rank == sender) { /* sender */
5 computation_on_GPU(dev_buf);
6 /* implicit GPU sync for the default CUDA stream */
7 cudaMemcpy(host_buf, dev_buf, size, ...);
8 /* dev_buf is reused; async GPU kernel launch */
9 more_computation_on_GPU(dev_buf);

10 MPI_Send(host_buf, size, ...);
11 }

(a) Hybrid MPI+CUDA program with manual synchronous data move-
ment (sender’s logic only). This approach loses data transfer perfor-
mance but gains a bit when the second GPU kernel is overlapped with
MPI.

1 double *dev_buf, *host_buf;
2 cudaStream_t kernel_stream, streams[chunks];
3 cudaMalloc(&dev_buf, size);
4 cudaMallocHost(&host_buf, size);
5 if (my_rank == sender) { /* sender */
6 computation_on_GPU(dev_buf, kernel_stream);
7 /* explicit GPU sync between GPU streams */
8 cudaStreamSynchronize(kernel_stream);
9 for(j=0;j<chunks;j++) {

10 cudaMemcpyAsync(host_buf+offset, dev_buf+offset,
11 D2H, streams[j], ...);
12 }
13 for(j=0;j<chunks;j++) {
14 /* explicit GPU sync before MPI */
15 cudaStreamSynchronize(streams[j]);
16 MPI_Isend(host_buf+offset, ...);
17 }
18 /* explicit MPI sync before GPU kernel */
19 MPI_Waitall();
20 more_computation_on_GPU(dev_buf);
21 }

(b) Hybrid MPI+CUDA program with manual asynchronous data move-
ment (sender’s logic only). This approach loses productivity but gains
data transfer performance. But, the second GPU kernel is not overlapped
with MPI.

Fig. 1: Tradeoffs with hybrid MPI+CUDA program design. For
MPI+OpenCL, clEnqueueReadBuffer and clEnqueueWriteBuffer
would be used in place of cudaMemcpy. Similarly, clGetEventInfo
or clFinish would be used in place of cudaStreamSynchronize.

on GPU streams (D-H) are followed by MPI operations on the
copied host data, the programmer explicitly waits or checks
the status of the GPU streams before calling MPI. The reason
is that MPI operates on ready host buffers and, in this case,
the host buffer will be undefined until the GPU stream has
completed its D-H operation. Similarly, if nonblocking MPI
operations are followed by GPU data transfer operations on the
same data, the programmer explicitly waits for the completion
of MPI before performing the GPU data transfer, as shown in
Figure 1.

GPU operations are performed only on GPU data, while
MPI operations are performed only on CPU data. When data
changes devices (i.e., GPU data is copied to the CPU), the pro-
gramming model also changes from CUDA/OpenCL to MPI.
However, explicit synchronization between GPU operations
and MPI is required only for dependent data operations.

1 double *dev_buf, *host_buf;
2 if (my_rank == sender) { /* send from GPU (CUDA) */
3 MPI_Send(dev_buf, ...);
4 } else { /* receive into host */
5 MPI_Recv(host_buf, ...);
6 }

(a) UVA-based design: example MPI code where a device buffer is sent
and received as a host buffer.

1 double *cuda_dev_buf; cl_mem ocl_dev_buf;
2 /* initialize a custom type */
3 MPI_Type_dup(MPI_CHAR, &type);
4 if (my_rank == sender) { /* send from GPU (CUDA) */
5 MPI_Type_set_attr(type, BUF_TYPE, BUF_TYPE_CUDA);
6 MPI_Send(cuda_dev_buf, type, ...);
7 } else { /* receive into GPU (OpenCL) */
8 MPI_Type_set_attr(type, BUF_TYPE, BUF_TYPE_OPENCL);
9 MPI_Recv(ocl_dev_buf, type, ...);

10 }
11 MPI_Type_free(&type);

(b) MPI Attribute-based design: example MPI code where a device
CUDA buffer is sent and received as an OpenCL device buffer.

Fig. 2: Design of GPU-integrated MPI frameworks.

III. DESIGN OF GPU-INTEGRATED MPI FRAMEWORKS

While, conceptually, most GPU-integrated MPI frameworks
are broadly similar to each other, they differ with respect to
the user programming semantics they provide. Specifically,
how GPU execution and communication integrates with MPI
communication can be different for different frameworks. In
this section, we discuss two such programming semantics that
are found in current GPU-integrated MPI frameworks: (1)
UVA-based design and (2) MPI attributes–based design.

a) UVA-based design: UVA is a CUDA-specific concept
that allows information about the buffer type to be encoded
inside a void * size argument. This allows both the host
memory and the GPU memory to be represented within a
common 64-bit virtual address space. In such a model, the user
would pass a void * communication buffer argument to MPI,
as it would do in a traditional MPI library (Figure 2a). The
MPI implementation would, internally, query for the buffer
type attribute using CUDA’s cuPointerGetAttribute function.
With this, the MPI implementation can identify whether the
buffer resides on host memory or on GPU memory and
thus decide whether to perform a pipelined data transfer
for GPU data over the PCIe and network interconnects or
to fall back to the traditional CPU data transfer logic. The
cuPointerGetAttribute function can also be used to query the
actual GPU device number on which the buffer resides. The
MVAPICH2-GPU implementation [16], for instance, uses the
UVA model. However, the cuPointerGetAttribute function is
expensive relative to extremely low-latency communication
times and can add significant overhead to host-to-host commu-
nication operations. Figure 3 shows the impact of this query on
the latency of intranode, CPU-to-CPU, communication using
MVAPICH v1.8 on our experimental platform described in
Section V.

Apart from the obvious downside that UVA is CUDA-

0

2

4

6

8

10

12

14

0 1 2 4 8 16 32 64 128 256 512 1024204840968192

La
te

n
cy

 (
μ

s)

Data Size (bytes)

Basic MPI

MPI + Datatype attribute check

MPI + Automatic detection

Fig. 3: Overhead of runtime checks incurred by intranode CPU-CPU
communication operations. The slowdown from automatic detection
(via cuPointerGetAttribute) is 23% to 235%, while the slowdown
from the attribute check is at most only 3%.

specific and is not relevant to other programming models
such as OpenCL, this approach is fundamentally limited by
the amount of information that can be passed by the user to
MPI. Specifically, only information that can be encoded within
a 64-bit space can be passed to the MPI implementation.
For example, the user cannot inform the MPI implementation
which stream (in CUDA) or command queue (in OpenCL) can
be used for the data transfer or whether MPI needs to order
the data transfer relative to an event on a stream or command
queue.

b) MPI communicator or datatype attributes–based de-
sign: Another programming semantic that can be exposed
by the MPI implementation is to use MPI communicator or
datatype attributes. MPI communicators specify a collection of
MPI processes and a communication context. MPI datatypes
are used to specify the type and layout of buffers passed
to the MPI library. The MPI standard defines an interface
for attaching metadata to MPI communicators or datatypes
through attributes. These attributes can be used to indicate
buffer type and any other information to the MPI library
(Figure 2b). Communicator attributes allow processes to mark
a communicator as “special” in that it would always move data
to/from GPUs. However, they are restricted in that they cannot
move data from the GPU on one process to host memory
of another process. Datatype attributes allow processes to
perform a specific communication to/from GPU memory or
host memory and thus are fully generic and can describe any
CPU/GPU communication pattern desired by the user. This
approach introduces a lightweight runtime attribute check to
each MPI operation, but the overhead is negligible, as shown
in Figure 3. Moreover, this approach is more extensible and
maintains compatibility with the MPI standard. The MPI-ACC
framework [8] uses this communication model.

An important capability of this model is that there is no

restriction on the amount of information that the user can
pass to the MPI implementation. The MPI implementation can
define attributes for the buffer type, buffer locality (e.g., which
GPU), which stream to use, ordering semantics, or basically
anything else. The MPI implementation can allow some of
these attributes to be optional for the user, for programming
convenience, without restricting the user from providing it as
needed.

IV. SYNCHRONIZATION SEMANTICS IN GPU-INTEGRATED
MPI FRAMEWORKS

In this section, we describe the synchronization and ordering
semantics when GPU execution and data movement operations
are interleaved with GPU-integrated MPI libraries.

A. Synchronization Semantics of the UVA-Based Design

In the naı̈ve MPI+GPU programming models, the syn-
chronization semantics occurred only when the data changed
devices; that is, if GPU data was copied to the CPU, the
programming semantics would also change from implicit
synchronization in CUDA/OpenCL to explicit synchronization
in MPI or vice versa. However, since GPU-integrated MPI can
operate directly on GPU data, the synchronization semantics
must be carefully defined. If GPU operations on a CUDA
stream, such as CUDA kernels or H-D transfers, are followed
by direct MPI operations on the same data (i.e., if there is data
dependence), there should be some form of synchronization
(explicit or implicit) between the GPU operation and the MPI
call even though the data has not changed devices. If the MPI
call does not have any data dependence with the preceding
GPU operation, then synchronization is not needed.

In the GPU programming model, however, streams are used
to implicitly indicate data dependence and maintain execution
order semantics. We could imagine MPI’s data-dependent
operations as GPU operations that belong to the same stream
as the preceding GPU operation, but it is impossible to pass
additional information, such as the dependent GPU stream,
to the UVA-based MPI model by just a void * argument.
Since the UVA-based model has no mechanism to implicitly
express data dependence, GPU operations and their dependent
MPI function calls are required to explicitly synchronize for
correctness. On the other hand, if a GPU operation follows a
nonblocking MPI operation, MPI semantics requires that MPI
be explicitly waited upon before reusing the data.

Consider a synthetic MPI application example with N
processes, where MPI process 0 computes a large array on
its local GPU and sends chunks of the array directly from
the GPU to the remaining N − 1 processes, similar to a
scatter operation. For the sake of argument, let us also assume
that the GPU array computation is data parallel, that is, the
array elements can be processed independently and can be
pipelined. This example application can be implemented by
using the UVA-based design in a couple of ways as shown in
Figure 4, where the GPU kernel execution is pipelined with
data movement, but MPI can be synchronous or asynchronous.
Clearly, while the example in Figure 4a is simpler, it is also

1 cudaStream_t myStream[N];
2 for(rank = 1; rank < N; rank++) {
3 fooKernel<<<b, t, myStream[rank]>>>(dev_buf+offset);
4 }
5 for(rank = 1; rank < N; rank++) {
6 /* explicit GPU stream sync before MPI */
7 cudaStreamSynchronize(myStream[rank]);
8 MPI_Send(dev_buf+offset, rank, ...);
9 }

(a) Simple UVA-based design: explicit GPU synchronization with
synchronous MPI.

1 cudaStream_t myStream[N];
2 int processed[N] = {1, 0};
3 for(rank = 1; rank < N; rank++) {
4 fooKernel<<<b, t, myStream[rank]>>>(dev_buf+offset);
5 }
6 numProcessed = 0; rank = 1;
7 while(numProcessed < N - 1) {
8 /* explicit GPU stream query before MPI */
9 if (cudaStreamQuery(myStream[rank])==cudaSuccess) {

10 MPI_Isend(dev_buf+offset, rank, ...);
11 numProcessed++;
12 processed[rank] = 1;
13 }
14 MPI_Testany(...); /* check progress */
15 flag = 1;
16 if(numProcessed < N - 1) /* find next rank */
17 while(flag) {
18 rank=(rank+1)%N; flag=processed[rank];
19 }
20 }
21 MPI_Waitall();

(b) Advanced UVA-based design: explicit GPU synchronization with
asynchronous MPI.

Fig. 4: Data-dependent MPI+GPU program with explicit GPU syn-
chronization and designed with UVA-based MPI.

less efficient because of the blocking GPU and MPI calls.
Moreover, while the GPU kernels in the different streams can
finish in any order, the program waits for them in issue order.
This unnecessary wait is removed in Figure 4b, but the code
becomes more complex.

Disadvantages of the UVA-Based Design: While the
UVA-based design provides an ideal API by perfectly con-
forming to the MPI standard for end-to-end CPU-GPU com-
munication, its code semantics forces explicit synchroniza-
tion between data-dependent (ordered) and interleaved GPU
and MPI operations. The MPI implementation can poten-
tially avoid the explicit synchronization semantics by conser-
vatively invoking cudaDeviceSynchronize before performing
data movement, but this approach will obviously hurt perfor-
mance and is impractical. Moreover, the UVA-based design is
not extensible for other accelerator models such as OpenCL
that do not support UVA, because it is impossible to pass the
cl context and cl command queue arguments to MPI through
just the void * argument.

B. Synchronization Semantics of the MPI Attribute-Based De-
sign

Since MPI can directly operate on GPU data, the synchro-
nization semantics of the MPI attribute-based model must also
be carefully defined, that is, explicit vs. implicit. Of course,

1 cudaStream_t myStream[N];
2 for(rank = 1; rank < N; rank++) {
3 fooKernel<<<b, t, myStream[rank]>>>(dev_buf+offset);
4 /* implicit GPU stream sync before MPI */
5 MPI_Type_dup(MPI_CHAR, &new_type);
6 MPI_Type_set_attr(new_type, BUF_TYPE, BUF_TYPE_CUDA);
7 MPI_Type_set_attr(new_type, STREAM_TYPE, myStream[rank]);
8 MPI_Isend(dev_buf+offset, new_type, rank, ...);
9 MPI_Type_free(&new_type);

10 }
11 /* explicit MPI sync */
12 MPI_Waitall();

Fig. 5: Data-dependent MPI+GPU program designed with the MPI
attribute-based design of MPI-ACC. The example showcases implicit
GPU synchronization with asynchronous MPI.

one can treat the attribute-based model just like the UVA-
based model and introduce explicit synchronization semantics
between data-dependent GPU and MPI calls. But, we can
do better with this model because there is no restriction
in the amount of information that the user can pass to the
MPI implementation via the MPI attribute metadata. Since
GPU streams implicitly indicate data dependence on GPUs,
the programmer can now pass the stream parameter itself as
one of the MPI attributes. The MPI implementation can use
this stream information to perform additional optimizations
for best performance. For example, if a stream parameter is
associated with an asynchronous MPI Isend call, the stream
could be added to a stream pool that is periodically queried
for completion instead of blocking on cudaStreamSynchro-
nize immediately. The MPI implementer is free to apply
different heuristics and additional optimizations on the stream
parameter, as needed. Since there exists a mechanism in the
attribute-based model to implicitly express data dependence,
GPU operations and their dependent MPI function calls can
be either implicitly or explicitly synchronized for correctness.
On the other hand, if a GPU operation follows a nonblocking
MPI operation, MPI semantics requires that MPI be explicitly
waited upon before reusing the data.

The synthetic MPI application example from Figure 4
can now be easily implemented in MPI-ACC by using the
attribute-based design and implicit synchronization as shown
in Figure 5. Note that the stream parameter that is passed to
MPI Isend is different for each loop iteration (or rank) and
we have to set that attribute in every loop. The GPU buffer
attribute type is constant and is set once before the loop exe-
cution. This example is fully nonblocking with asynchronous
and interleaved GPU and MPI operations. With this design, we
can do away with the complex logic of looping over the GPU
streams and explicitly coordinating between the GPU and MPI
operations. Instead, by passing more information to MPI, the
synchronization semantics can be implicitly controlled within
the MPI implementation.

Design of Stream Synchronization in MPI-ACC: Fig-
ure 6 illustrates our approach to synchronizing GPU and
MPI operations within MPI-ACC. We consider only GPU-
specific MPI operations for this discussion; the CPU data

MPI_Isend
Stream
Request
Object

Request
creation GPU Stream Request

Pool

GPU Stream Request
Pool

On request
completion

Send Initiation

Progress Engine Loop

1. Perform RTS/CTS
handshake.

2. Send payload data
using multiple GPU
streams.

Fig. 6: MPI-ACC’s design for MPI+GPU synchronization. Example:
MPI Isend.

is handled separately as before. When the programmer ini-
tiates an asynchronous MPI call on a GPU buffer with a
dependent stream parameter, we have two options: (1) we
can use the application’s stream itself for the data transfers,
which means that we avoid the complex management of
streams and their synchronization within MPI, or (2) we can
wait for the completion of the application stream and use
MPI-ACC’s multiple internal streams for more efficient data
transfer. We use the second approach because, in practice,
multiple streams are more efficient for pipelining, although
their management can become complex. Once the user initiates
an MPI command, we simply create a corresponding request
object in MPI-ACC, add it to the outstanding GPU request
pool, and return. We do not query or wait for the stream object
immediately. MPICH’s progress engine periodically checks
for unfinished MPI transactions and tries to complete them
when possible. We leverage and extend the progress engine
to periodically query for all the unfinished stream requests.
If we find that a stream request has completed, it means that
the data dependence semantics have been observed and that we
are free to communicate the corresponding GPU data by using
our internal streams. For every completed stream request, we
follow MPI’s communication protocol to send the rest of the
data to the receiver, namely, send the Ready-To-Send (RTS)
packet to receiver, wait for the Clear-To-Send (CTS) packet,
and then transfer the actual GPU payload data to the receiver.
On the other hand, if the programmer initiates an MPI call
without a dependent stream parameter, it means that the data
is immediately ready to be transferred. In this case, we do not
add this request to the stream pool but directly send an RTS
packet to the receiver to initiate data communication.

Summary: By using three implementations of a synthetic
example program (Figures 4 and 5), we demonstrated that
with the UVA-based design one can use only the explicit
synchronization method. On the other hand, with the MPI
attribute-based design, we can use either explicit or implicit

synchronization, and the programmer can choose the preferred
programming style. The attribute-based design can be consid-
ered somewhat like a superset of the UVA-based design. To
use implicit GPU synchronization with attribute-based design,
the programmer sets the stream parameter as an MPI attribute,
while explicit synchronization can be used by simply not
setting it. The explicit synchronization of the advanced UVA
approach (Figure 4b) is more complex to code when compared
with the simple UVA- and attribute-based approaches but is
more likely to achieve the best performance. On the other
hand, the attribute-based implicit GPU synchronization exam-
ple is the most straightforward to code, but its performance
depends on MPI’s internal implementation, for example, the
stream request pool management.

V. EVALUATION AND ANALYSIS

In this section, we evaluate the performance of MPI-ACC’s
stream management implementation, which is key to enabling
implicit synchronization semantics in MPI+GPU programs. To
this end, we use code variants of the simple and advanced
UVA-based approaches (Figure 4) and the MPI attribute–based
approach (Figure 5), and we compare the performances of
both implicit and explicit synchronization semantics by using
MPI-ACC as the MPI implementation. All our experiments
are run on two nodes of a four-node GPU cluster, where each
node has a dual-socket oct-core AMD Opteron 6134 (Magny-
Cours family) processor. Each node is also attached to two
NVIDIA Tesla C2050 GPUs, which belong to the GF100
Fermi architecture family (compute capability 2.0). Each CPU
node has 32 GB of main memory, and each GPU has 3 GB
of device memory. We use the CUDA v4.0 toolkit with the
driver v285.05.23 as the GPU management software. MPI-
ACC, which is based on MPICH, is compiled with GCC v4.1.2
and on the Linux kernel v2.6.35.

A. Benchmark with Concurrent Multi-GPU Kernels

In the aforementioned MPI+GPU examples, separate
streams are used to launch multiple kernels; hence, they could
execute concurrently given sufficient GPU resources. If the
program is run on a single GPU with a single hardware
execution queue, the kernels are likely to execute and complete
serially in issue order. In such cases, the UVA-based approach
and attribute-based approach will perform identically to each
other, because the advanced UVA-based implementation and
MPI-ACC’s stream management are specifically designed to
take advantage of out-of-order stream completion to reduce
the inter-stream wait time. On the other hand, if the kernels
can run concurrently on multiple GPUs within a single node
or within a single GPU itself (NVIDIA GPUs with compute
capability 2.0 or higher) so that streams complete out of order,
MPI-ACC (and the advanced UVA-based method) will service
the streams in-completion order instead. However, current
NVIDIA GPUs (pre-Kepler) have a single hardware queue for
kernel execution that restricts the kernels to execute and finish
in issue order.

To showcase the efficacy of MPI-ACC’s stream management
for out-of-order stream completion, we run the above examples
on multi-GPU nodes, where each GPU has its own hardware
execution queue. In this experiment, we use three MPI pro-
cesses: MPI rank 0 runs the GPU kernels on both GPUs and
is also the sender process, while ranks 1 and 2 are just the
receiver processes. Rank 0 is assigned exclusively to a single
node, and the other two ranks are assigned to the other node in
the cluster. Rank 0 issues kernels K0 and K1 concurrently on
GPU 0 and GPU 1, respectively, by first launching K0 on GPU
0 followed by K1 on GPU 1. Upon kernel completion, rank
0 sends data from GPU 0 to rank 1 (MPI0) and from GPU 1
to rank 2 (MPI1) by using MPI-ACC as the GPU-integrated
MPI, but the kernels need not complete in issue order. The
ordering of the MPI calls is also irrelevant in this example.

1) Effect of kernel computation size: The simple UVA-
based approach will always wait in issue order; that is, its
execution order will always be K0–MPI0–K1–MPI1. If both
K0 and K1 have the same execution time or K1 always
takes longer to finish than K0, then the performance of the
simple UVA-based example will be identical to MPI-ACC.
On the other hand, if K1 finishes earlier, then the simple
UVA-based example will unnecessarily delay MPI1 until K0
and MPI0 have finished. The stream management of MPI-
ACC can detect K1’s completion and issue MPI1 first. If the
combined execution time for K1 and MPI1 is equal to the
execution time of K0 alone, then the effect of K1 and MPI1
can completely be hidden by using MPI-ACC. Furthermore,
if K0 is very much larger than K1 and MPI1 combined, we
will see diminishing returns from overlapping the negligible
K1 and MPI1 operations.

In our experiment, we artificially vary the compute time of
K0 and keep K1 constant by simple loop manipulation. Also,
we ensure that K1 finishes first and that data from GPU 1 will
always be ready to be transferred before GPU 0. We begin
with K0 being equal to K1, then gradually increment the loop
iterations of K0. From Figure 7a, we see that MPI-ACC (and
the advanced UVA-based example) can outperform the simple
UVA-based approach by up to 34.2%, which we find to be the
point of perfect overlap between K0 and K1 +MPI1.

2) Effect of data transfer size: The relative data transfer
time of MPI1 with respect to MPI0 will also determine the
benefits of MPI-ACC’s in-completion order semantics versus
the in-issue servicing of the simple UVA-based example. We
choose the optimal loop iterations for K0 and K1 based on the
previous experiment for maximum overlap, and we vary the
data transfer size of MPI1 relative to MPI0. From Figure 7b,
we see that MPI-ACC (and the advanced UVA-based example)
can outperform the simple UVA-based approach by up to
34.1% at the optimal point.

Also, the performance difference between MPI-ACC and
the advanced UVA-based example is negligible in both experi-
ments. This means that the attribute-based design of MPI-ACC
improves productivity with implicit semantics while achieving
the same performance as the manual hand-optimized UVA-
based example with explicit synchronization.

80.0%

90.0%

100.0%

110.0%

120.0%

130.0%

140.0%

R
e

la
ti

ve
 E

xe
cu

ti
o

n
 T

im
e

(N

o
rm

al
iz

e
d

 t
o

 A
tt

ri
b

u
te

-b
as

e
d

)

Variance in Kernel Computation Time: (K0-K1)/K1

UVA-based (simple) UVA-based (advanced) Attribute-based

(a) Analyzing the effect of kernel computation size. Kernel0 is run on GPU
0, and its compute iterations and execution time are varied, while Kernel1
is run on GPU 1 and has a constant execution time.

80.0%

90.0%

100.0%

110.0%

120.0%

130.0%

140.0%

1/64 1/32 1/16 1/8 1/4 1/2 1 2 4

R
e

la
ti

ve
 E

xe
cu

ti
o

n
 T

im
e

(N

o
rm

al
iz

e
d

 t
o

 A
tt

ri
b

u
te

-b
as

e
d

)

Ratio of Data Transfer Sizes

UVA-based (simple) UVA-based (advanced) Attribute-based

(b) Analyzing the effect of data transfer size. Kernel0 and Kernel1 are
fixed at the optimal ratio and the data transfer size from GPU 1 is varied.

Fig. 7: Performance comparison between the explicit and implicit
GPU synchronization semantics. Both the UVA-based models use
explicit synchronization semantics while the attribute-based model
uses implicit synchronization.

B. Benchmark with OpenCL Command Queues

In OpenCL, synchronization semantics are defined im-
plicitly via command queues or explicitly via user events.
Command queues can be initialized as in-order, which denotes
implicit ordering, or as out-of-order, which denotes that the
GPU operations in the command queue can be treated as com-
pletely unordered. MPI-ACC can leverage the rich stream and
event information that is passed by the application developer to
make transparent optimization decisions, as needed. Consider
a simple example, where an MPI process initiates an asyn-
chronous H-D transfer to the GPU and then immediately calls
MPI Send on some independent buffer, but both being applied
to the same command queue. MPI-ACC queries the command

0

5000

10000

15000

20000

25000

30000

35000

1 2 4 8 16 32 64 128 256

M
P

I_
Se

n
d

 T
im

e
 (

µ
s)

Relative data size of preceding asynchronous H-D transfer

In-order Command Queue Out-of-order Command Queue

Fig. 8: MPI-ACC’s attribute-based design leveraging OpenCL’s out-
of-order command queue semantics. The x-axis indicates the relative
data sizes for an asynchronous H-D transfer. MPI-ACC waits for in-
order queues but simultaneously performs H-D and MPI Send for
out-of-order queues.

queue information and synchronizes on the command queue
only if it is not an out-of-order queue. The communication
time of the MPI Send operation can largely vary if MPI does
not respect the queue semantics, as shown in Figure 8.

VI. DISCUSSION

Understanding and effectively utilizing synchronization and
ordering semantics of operations are fundamental to writing
scalable applications, as we head to increasingly complex and
parallel hardware. The ability to process computation and data
as they arrive, by minimizing stalls imposed by dependencies
and other runtime restrictions, is critical to achieving high
performance.

While such goals are already observed in current GPU
programming models such as CUDA and OpenCL, runtime
driver implementations of some current hardware make it hard
to easily realize them in practice. CUDA provides streams
and OpenCL provides command queues that are essentially
methodologies for specifying ordering or dependency require-
ments between different operations. However, several restric-
tions in the runtime environment make it hard to effectively
utilize hardware even if no ordering or dependency require-
ments are provided.

a) CUDA Stream-0 Semantics: In general, operations
issued on a single stream follow a strict dependency order,
while operations issued on different streams can be processed
and completed out of order. However, CUDA stream 0 is
unique in that it is completely ordered with all operations
issued on any stream of the device. That is, issuing operations
on stream 0 would be functionally equivalent to synchronizing
the entire device before and after each operation.

Figure 9(a) illustrates the order in which commands were
issued to the different streams. Specifically, the following order
was issued for issuing the operations: (a) C1 and C2 were

issued on stream 1; (b) C3 and C4 were issued on stream 0;
(c) C5 and C6 were issued on stream 1; (d) C7 and C8 were
issued on stream 3.

Ideally, the commands on different streams would be com-
pletely out of order and would execute whenever a particular
resource on an accelerator was available to execute the given
command. For instance, whenever a GPU was free to move
data to or from the host memory, if a data movement operation
was available to be executed on any of the streams, it would be
executed. However, the strict ordering semantics imposed by
stream 0 make this impossible; instead, a more conservative
execution order is used in practice, as illustrated in Figure 9(b).

b) Hardware Queue Semantics and Ordering: While the
user application is allowed to create a large number of streams
or command queues, the number of hardware queues exposed
by the GPU device, and hence the parallelism exposed by
the GPU device, is limited. Current NVIDIA GPUs expose
three hardware queues: one for computational kernels, one
for device-to-host data transfers, and one for host-to-device
data transfers. Commands issued to any of the user streams or
command queues eventually end up in one of these hardware
queues. The limited number of hardware queues is not too
much of a concern by itself; however, current hardware
enforces strict ordering semantics on these hardware queues
that make this a significant problem.

Figure 10(a) illustrates the issue order of commands on the
different user streams, and Figure 10(b) illustrates how they
are queued up on the hardware queues. To avoid the issue of
the above-mentioned CUDA stream-0 semantics, let us assume
that all commands are issued on nonzero streams. Commands
starting with “K” refer to computational kernels, those starting
with “DH” refer to device-to-host data transfers, and those
starting with “HD” refer to host-to-device data transfers.

Note that K1 has a dependency on DH1, which requires
it to stall for DH1 to finish. However, even though K2
is on a completely different stream and has a dependency
on neither K1 nor DH1, it is forced to stall because the
hardware queue for computational kernels is blocked by K1.
This is a completely implementation-specific and unnecessary
restriction that can be avoided either by allowing the hardware
queues to better track dependencies between operations or by
providing additional hardware queues that have no ordering
restrictions between them.

c) Kernel Completion Signaling: One approach for the
user or the MPI implementation to know when the dependency
on a stream is satisfied is to request a completion event for
previous operations issued on the stream. While a completion
event guarantees that the operation is complete, every com-
pleted operation does not necessarily generate a unique event.
Specifically, for performance reasons, some GPUs coalesce
completion events for sequentially issued kernels. Thus, if two
kernels, K1 and K2, are issued in sequence (whether on the
same stream or different streams) and if an event is requested
after each kernel, these two events will be coalesced into a
single signaling event that is delivered after both kernels have
completed. This is not a significant concern when the two

C3 C4

C5 C6

C7 C8

C1 C2

Stream 0

Stream 1

Stream 2

Issue Order

(a) Issue order of commands.

C1 C2

Barrier

Logical

Barrier

Logical

C3 C4

C5 C6

C7 C8

Stream 0

Stream 1

Stream 2

Issue Order

(b) Execution order of commands.

Fig. 9: CUDA stream-0 semantics.

K1DH1

K2

Stream 1

Stream 2

Issue Order

(a) Issue order of commands.

DH1

K1 K2

Kernel Queue

D2H Queue

H2D Queue

Execution Order

(b) Execution order of commands.

Fig. 10: Hardware queue semantics.

kernels are on the same stream. If the two kernels were on
different stream, however, and if the user issued a data transfer
operation on the same stream as K1, it would have to wait
until K2 has finished as well since it would not be signaled
of K1’s completion independently. This issue is illustrated in
Figure 11.

d) Implications to GPU-integrated MPI implementations:
All of the above hardware and software nuances are especially
important when designing GPU-integrate MPI implementa-
tions. For example, if the user issues several kernels in
sequence on different streams, any data transfer operation
issued by MPI on any of the streams has to wait for all
kernels to finish because of the kernel completion signaling
semantics. This is of particular concern when the data transfer
operation is dependent on the completion of any one of issued
kernels because, in such a case, the data transfer engine
would be idle for the execution of all the kernels. If the
user issues any GPU operation to the (default) stream 0 in
CUDA, any MPI operation on that GPU will be stalled until
the stream 0 has completed all its operations. NVIDIA’s next
generation Kepler architecture comes with multiple hardware
queues where kernels and data transfer operations can truly
finish out of issue order, which could largely alleviate the
hardware queue ordering problem. Since our scalable stream
management design within MPI-ACC can substantially gain
from out of order completion of GPU operations, we expect
our attribute-based design and implicit synchronization seman-
tics to achieve programmer productivity and performance for
future architecture designs as well.

VII. RELATED WORK

MVAPICH [7] is another implementation of MPI based on
MPICH and is optimized for RDMA networks such as Infini-
Band. MVAPICH2-GPU, which is the latest release of MVA-
PICH (v1.8), includes support for transferring CUDA memory
regions across the network [16] (point-to-point, collective, and
one-sided communications). In order to use this, however, each
participating system should have an NVIDIA GPU of compute
capability 2.0 or higher and CUDA v4.0 or higher, because
MVAPICH2-GPU leverages the UVA feature of CUDA [12].
On the other hand, MPI-ACC takes a more portable approach:
we support data transfers among CUDA [12], OpenCL [13],
and CPU memory regions; and our design is independent
of library version or device family. By including OpenCL
support in MPI-ACC, we automatically enable data movement
between a variety of devices, including GPUs from NVIDIA
and AMD, CPUs from IBM and Intel, AMD Fusion, and
IBM’s Cell Broadband Engine. Also, we make no assumptions
about the availability of key hardware features (e.g., UVA) in
our interface design, thus making MPI-ACC a truly generic
framework for heterogeneous CPU-GPU systems.

CudaMPI [17] is a library that helps improve programmer
productivity when moving data between GPUs across the
network. It provides a wrapper interface around the existing
MPI and CUDA calls. Our contribution conforms to the MPI
standard, and our implementation removes the overhead of
communication setup time, while maintaining productivity.

GPUs have been used to accelerate many HPC applications
across a range of fields in recent years [1], [2], [18], [19].
For large-scale applications that go beyond the capability
of one node, manually mixing GPU data movement with

K1

K2

DH1Stream 1

Stream 2

Issue Order

(a) Issue order of commands.

K1 K2

DH1

Kernel Queue

D2H Queue

H2D Queue

Execution Order

(b) Execution order of commands.

Fig. 11: Kernel completion signaling.

MPI communication routines is still the status quo, and its
optimization usually requires expertise [20], [21]. In this work,
our experience with MPI-ACC [8], our GPU-integrated MPI
implementation, shows that the manual hybrid programming
model can be replaced with extended MPI support, with
additional optimizations automatically made available to de-
velopers.

VIII. CONCLUSIONS

In this paper, we investigated the synchronization and order-
ing semantics that are used by different GPU-integrated MPI
frameworks and are based on the UVA-based programming
approach and the MPI attributes–based approach. We demon-
strated that the UVA-based approach does not allow users
to provide enough semantic information about GPU stream
ordering and completion semantics. The MPI attributes–based
approach, on the other hand, allows users to provide richer
information to the MPI implementation that it can take ad-
vantage of for performance and correctness without forcing
the user to manage these synchronization semantics. Through
benchmark experiments using multiple GPU streams and MPI
communication operations we showed that while the UVA-
based design is useful for isolated point-to-point communica-
tion with no data dependencies or ordering requirements, the
attribute-based design might be more appropriate when multi-
ple interdependent MPI and GPU operations are interleaved.

ACKNOWLEDGMENT

This work was partially supported by the U.S. Department
of Energy under grant DE-SC0001770 and contracts DE-
AC02-06CH11357, DE-AC05-00OR22725, and DE-ACO6-
76RL01830, and an NVIDIA Graduate Fellowship.

REFERENCES

[1] L. Weiguo, B. Schmidt, G. Voss, and W. Muller-Wittig, “Streaming
Algorithms for Biological Sequence Alignment on GPUs,” IEEE Trans-
actions on Parallel and Distributed Systems, vol. 18, no. 9, pp. 1270–
1281, Sept. 2007.

[2] A. Nere, A. Hashmi, and M. Lipasti, “Profiling Heterogeneous Multi-
GPU Systems to Accelerate Cortically Inspired Learning Algorithms,”
in Parallel Distributed Processing Symposium (IPDPS), 2011 IEEE
International, May 2011, pp. 906–920.

[3] W.-C. Feng, Y. Cao, D. Patnaik, and N. Ramakrishnan, “Temporal
Data Mining for Neuroscience,” in GPU Computing Gems, Feb. 2011,
emerald Edition.

[4] “TOP500,” http://www.top500.org/lists/2012/11/highlights.
[5] “NVIDIA GPUDirect,” http://developer.nvidia.com/gpudirect.

[6] MPI: A Message-Passing Interface Standard Version 2.2. Message
Passing Interface Forum, 2009.

[7] “MVAPICH: MPI over InfiniBand, 10GigE/iWARP and RoCE,” http:
//mvapich.cse.ohio-state.edu/.

[8] A. M. Aji, J. S. Dinan, D. T. Buntinas, P. Balaji, W. chun Feng, K. R.
Bisset, and R. S. Thakur, “MPI-ACC: An Integrated and Extensible
Approach to Data Movement in Accelerator-Based Systems,” in IEEE
International Conference on High Performance Computing and Com-
munications (HPCC), Liverpool, UK, June 2012.

[9] F. Ji, A. Aji, J. Dinan, D. Buntinas, P. Balaji, W.-C. Feng, and X. Ma,
“Efficient Intranode Communication in GPU-Accelerated Systems,” in
The Second International Workshop on Accelerators and Hybrid Exas-
cale Systems (AsHES), May 2012.

[10] F. Ji, A. M. Aji, J. S. Dinan, D. T. Buntinas, P. Balaji, R. S. Thakur,
W. chun Feng, and X. Ma, “DMA-Assisted, Intranode Communication in
GPU Accelerated Systems,” in IEEE International Conference on High
Performance Computing and Communications (HPCC), Liverpool, UK,
June 2012.

[11] J. Jenkins, J. S. Dinan, P. Balaji, N. F. Samatova, and R. S. Thakur, “En-
abling Fast, Noncontiguous GPU Data Movement in Hybrid MPI+GPU
Environments,” in IEEE International Conference on Cluster Computing
(Cluster), Beijing, China, Sep. 2012.

[12] NVIDIA, “CUDA,” http://www.nvidia.com/object/cuda home new.
html.

[13] Aaftab Munshi, “The OpenCL Specification,” 2008, http://www.khronos.
org/registry/cl/specs/opencl-1.0.29.pdf.

[14] Nvidia, “NVIDIA CUDA C Programming Guide version 4.0,” May
2011.

[15] Steve Rennich, NVIDIA, “CUDA C/C++ Streams and Concurrency,”
http://developer.download.nvidia.com/CUDA/training/ StreamsAndCon-
currencyWebinar.pdf.

[16] H. Wang, S. Potluri, M. Luo, A. Singh, S. Sur, and D. Panda,
“MVAPICH2-GPU: optimized GPU to GPU communication for in-
finiband clusters,” International Supercomputing Conference (ISC) ’11,
2011.

[17] O. S. Lawlor, “Message Passing for GPGPU Clusters: CudaMPI,” in
IEEE International Conference on Cluster Computing and Workshops,
2009. CLUSTER ’09., Sept. 2009, pp. 1–8.

[18] J. C. Phillips, J. E. Stone, and K. Schulten, “Adapting a Message-Driven
Parallel Application to GPU-Accelerated Clusters,” in International
Conference on High Performance Computing, Networking, Storage and
Analysis, 2008. SC 2008, Nov. 2008, pp. 1–9.

[19] L. Ligowski and W. Rudnicki, “An Efficient Implementation of Smith
Waterman Algorithm on GPU Using CUDA, for Massively Parallel
Scanning of Sequence Databases,” in IEEE International Symposium
on Parallel Distributed Processing, 2009. IPDPS 2009, May 2009, pp.
1–8.

[20] T. Hamada, T. Narumi, R. Yokota, K. Yasuoka, K. Nitadori, and
M. Taiji, “42 TFlops Hierarchical N-body Simulations on GPUs with
Applications in Both Astrophysics and Turbulence,” in Proceedings of
the Conference on High Performance Computing Networking, Storage
and Analysis, ser. SC ’09. New York: ACM, 2009, pp. 1–12. [Online].
Available: http://doi.acm.org/10.1145/1654059.1654123

[21] W. M. Brown, P. Wang, S. J. Plimpton, and A. N. Tharrington, “Imple-
menting Molecular Dynamics on Hybrid High Performance Computers
– Short Range Forces,” Computer Physics Communications, vol. 182,
no. 4, pp. 898–911, 2011.

jbullock
Typewritten Text

jbullock
Typewritten Text

jbullock
Typewritten Text
The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government.

jbullock
Typewritten Text

jbullock
Typewritten Text

jbullock
Typewritten Text

